Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Mol Biosci ; 7: 610932, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33469548

RESUMO

The genus Burkholderia sensu lato is composed of a diverse and metabolically versatile group of bacterial species. One characteristic thought to be unique for the genus Burkholderia is the presence of two forms each (with and without 2-hydroxylation) of the membrane lipids phosphatidylethanolamine (PE) and ornithine lipids (OLs). Here, we show that only Burkholderia sensu stricto strains constitutively form OLs, whereas all other analyzed strains belonging to the Burkholderia sensu lato group constitutively form the two forms of PE, but no OLs. We selected two model bacteria to study the function of OL in Burkholderia sensu lato: (1) Burkholderia cenocepacia wild-type which constitutively forms OLs and its mutant deficient in the formation of OLs and (2) Robbsia andropogonis (formerly Burkholderia andropogonis) which does not form OL constitutively, and a derived strain constitutively forming OLs. Both were characterized under free-living conditions and during pathogenic interactions with their respective hosts. The absence of OLs in B. cenocepacia slightly affected bacterial growth under specific abiotic stress conditions such as high temperature and low pH. B. cenocepacia lacking OLs caused lower mortality in Galleria mellonella larvae while R. andropogonis constitutively forming OLs triggers an increased formation of reactive oxygen species immediately after infection of maize leaves, suggesting that OLs can have an important role during the activation of the innate immune response of eukaryotes.

2.
Mol Microbiol ; 103(5): 896-912, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28009086

RESUMO

Treponema denticola synthesizes phosphatidylcholine through a licCA-dependent CDP-choline pathway identified only in the genus Treponema. However, the mechanism of conversion of CDP-choline to phosphatidylcholine remained unclear. We report here characterization of TDE0021 (herein designated cpt) encoding a 1,2-diacylglycerol choline phosphotransferase homologous to choline phosphotransferases that catalyze the final step of the highly conserved Kennedy pathway for phosphatidylcholine synthesis in eukaryotes. T. denticola Cpt catalyzed in vitro phosphatidylcholine formation from CDP-choline and diacylglycerol, and full activity required divalent manganese. Allelic replacement mutagenesis of cpt in T. denticola resulted in abrogation of phosphatidylcholine synthesis. T. denticola Cpt complemented a Saccharomyces cerevisiae CPT1 mutant, and expression of the entire T. denticola LicCA-Cpt pathway in E. coli resulted in phosphatidylcholine biosynthesis. Our findings show that T. denticola possesses a unique phosphatidylcholine synthesis pathway combining conserved prokaryotic choline kinase and CTP:phosphocholine cytidylyltransferase activities with a 1,2-diacylglycerol choline phosphotransferase that is common in eukaryotes. Other than in a subset of mammalian host-associated Treponema that includes T. pallidum, this pathway is found in neither bacteria nor Archaea. Molecular dating analysis of the Cpt gene family suggests that a horizontal gene transfer event introduced this gene into an ancestral Treponema well after its divergence from other spirochetes.


Assuntos
Vias Biossintéticas , Diacilglicerol Colinofosfotransferase/metabolismo , Fosfatidilcolinas/biossíntese , Treponema denticola/metabolismo , Alelos , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Catálise , Cinética , Manganês/metabolismo , Mutagênese , Alinhamento de Sequência , Treponema denticola/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...